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We propose here a simple physical model of the fast surface domain growth with thet3/2 algebraic law
observed for surface-mediated phase separation of symmetric fluid mixtures. This unusually fast coarsening is
likely caused by the hydrodynamic spreading of a more wettable fluid phase on a two-dimensional solid
surface via bicontinuous fluid tubes. The gradual change in the growth exponent from 1 to 3/2 with an increase
in the quench depth can likely be explained by the shape transition of wetting droplets from hemisphere to disk,
which is induced by the increase in the wetting power with the quench depth. We also discuss the slowing
down of the fast growth mode in the late stage. This slowing down is likely caused by the constraint that
domain growth velocity cannot exceed the viscous-dissipation-limit velocity.@S1063-651X~96!12308-4#

PACS number~s!: 68.45.Gd, 64.75.1g, 64.60.2i, 05.70.Fh

I. INTRODUCTION

Pattern evolution in phase-separating mixtures has been
extensively studied from both the experimental and the theo-
retical viewpoints@1#. Coarsening dynamics has largely been
clarified for phase separation in bulk. Since the finding of
critical wetting phenomena@2#, wetting phenomena have
also attracted much attention@3#. Phase separation under an
influence of wetting to a solid surface has recently been in-
tensively studied by many researchers both experimentally
and theoretically@4#. This problem is important because any
experiment on phase separation can never be free from sur-
face effects since we need a container to support a sample. It
is also interesting from the fundamental viewpoint to reveal
the effects of geometrical confinement and symmetry-
breaking surface field on phase-separation behavior. Because
of the complex nature of dynamic interplay between wetting
and phase separation, however, coarsening dynamics under
an influence of wetting has not been fully clarified yet.

Here we focus our attention on one of the unsolved prob-
lems: Recently Wiltzius and Cumminget al. @5,6# have
found the existence of the fast and slow modes for phase
separation under an influence of wetting in a quasi-two-
dimensional configuration. The most striking feature of their
findings is the fast mode of domain growth with the time
exponent of 3/2. Shiet al. @7# and Harrisonet al. @8# dem-
onstrated the universality of the fast mode in fluid mixtures
and further confirmed that the exponent increases from 1 to
3/2 with an increase in the quench depth. This surprisingly
fast coarsening has attracted much attention since it is the
fastest coarsening ever known for phase separation@1#.

Since then, there have been a few theoretical efforts
@9–11# to explain the fast-mode kinetics. Troian proposed a
model which couples anisotropic diffusional growth to the
process of domain coalescence@9#. She explained the phe-
nomenon on the assumption that there are two length scales,
RB and RS (B and S stand for bulk and surface, respec-
tively!. She derived the growth lawsRB;t1/3 andRS;t1/2.
Further, the geometrical constraint of three-dimensional~3D!
growth near a two-dimensional~2D! surface increases the
effective exponent due to coalescence by a factor of 3 as in
the case of the coarsening of breath figures@12#. Thus, she

obtained the exponent of 3/2. Marko, on the other hand, con-
sidered the hydrodynamic effect and showed that even the
fast mode should be slower than the hydrodynamic coarsen-
ing @10#. Keblinski et al. also pointed out the importance of
the hydrodynamic effect based on their simulation@11#.

Among these models, only Troian’s model has a possibil-
ity of explaining the exponent of 3/2. Although her model is
an interesting physical model, there have still remained
counterarguments@11,9#. Further, her model is based on the
assumption that small domains with the slow growth law of
t1/3 observed by Wiltzius and Cumminget al. @5,6# reflect
the bulk phase separation. We have recently demonstrated,
however, that the small droplet structure is not due to the
primary bulk phase separation, but is due to the secondary
phase separation likely caused by the interface quench effect
unique to hydrodynamic coarsening of symmetric fluid mix-
tures@13#. Thus, we think that the precondition of Troian’s
model that phase separation proceeds with droplet morphol-
ogy is probably not appropriate. More importantly, we think
that the diffusional growth can hardly explain such quick
growth of domains. We believe that the hydrodynamic coars-
ening should be responsible for the phenomenon.

In this paper, we propose a simple physical model that the
more wettable phase quickly spreads over the surface by a
hydrodynamic mode via bicontinuous tubes. In Sec. II, we
describe the specific feature of hydrodynamic coarsening of
bicontinuous pattern. In Sec. III, we propose a simple model
of fast domain growth which can explain the time exponent
of 3/2. The predictions based on the model are compared
with the experimental results. In Sec. IV, we discuss the
spatial correlation between surface domains and the resulting
scattering pattern, based on the elementary fast coarsening
mechanism of individual wetting droplets derived in the pre-
ceding section. In Sec. V, we discuss the remaining problems
of our model. Finally we summarize our study in Sec. VI.

II. HYDRODYNAMIC COARSENING
OF BICONTINUOUS PATTERN

It is well known that a symmetric fluid mixture phase
separates while keeping a bicontinuous pattern and the coars-
ening proceeds by hydrodynamic tube instability~Siggia’s
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mechanism! @1,14#. The phase-separation process under a
geometrical constraint also exhibits this growth behavior for
symmetric fluid mixtures@10,15–20#. All the fluid mixtures
showing the fast-mode kinetics have nearly critical compo-
sitions. Thus, the relevant late-stage coarsening mechanism
should be hydrodynamic coarsening caused by tube hydro-
dynamic instability@1,14#.

Our observation of phase-separation behavior in a one-
dimensional ~1D! capillary strongly supports this fact
@15,16#: ~i! For nonviscous fluid mixtures, the formation of
the wetting layer finishes within a few seconds. Such fast
transport of material is possible only by a hydrodynamic
process. Further, we have directly observed the pumping
process that fluid is supplied via wetting tubes into the wet-
ting layer in the 1D capillary experiment~see Refs.@15,16#!.
~ii ! Linear growth of the wetting layer thicknessh (h;t) has
successfully been explained by hydrodynamic transport of
fluid from bulk to surfaces@16#.We believe that this elemen-
tary process of the hydrodynamic wetting mode observed in
a 1D capillary should be common for a 2D capillary since
the thickness of the 1D capillary is much larger than that of
a bicontinuous tube.

III. A SIMPLE MODEL OF FAST SURFACE DOMAIN
GROWTH

A. Simple theory

Based on this hydrodynamic coarsening mechanism, we
here propose a simple model of the fast surface domain
growth @16#. The pressure stemming from the interface ten-
sion s is lowest for a wetting layer because of the smallest
curvature of its interface. Thus, there is a pressure gradient
between a bicontinuous tube and its wetting part, reflecting
the difference in the transverse curvature of the tube between
them. This causes a hydrodynamic flow from a tube to a
wetting droplet on the wall. Since the pressure gradient be-
tween the tube with a radius ofa and the wetting layer is
;s/a over the distancea, the flux of this flow is estimated
asQ;(s/h)a2 @15,16#, whereh is the viscosity. Thus, the
more wettable fluid is continuously supplied to a wetting
droplet via a bicontinuous tube@21#. There can be two kinds
of wetting droplets depending upon wettability,~a! hemi-
spherical droplets and~b! disklike droplets, as schematically
shown in Fig. 1. The shape of wetting droplets is probably

closely related to the competition between the driving force
for spreading coming from the wetting energyDg
(5ga2gb , g i : the surface interaction energy fori -phase!
and the opposing force due to the liquid-liquid interface en-
ergys: The former favors a 2D droplet with the large con-
tact area with a solid surface, while the latter favors a 3D
droplet with a minimum liquid-liquid interface area. The
competition between these two factors can be characterized
by the so-called wetting powerS, which is defined as
S5Dg2s. Since Dg5Dg0e

b (e5DT/Tc , the reduced
temperature;b, the exponent of phase diagram! and
s5s0e

m (m52n) @3#, the wetting powerS increases with
an increase in the quench depthDT (DT5Tc2T, Tc a criti-
cal temperature! in the vicinity of Tc . Thus, 2D droplets are
more favored for a deeper quench. Energetically 2D droplets
are always favored in the complete wetting region, while
kinetically 3D droplets are favored because of less viscous
dissipation. This point will be discussed later.

Under strong wettability, the growth of wetting droplets
~spreading process! is likely two-dimensional and the thick-
ness of a disklike dropleth is roughly constant with time.
This 2D nature of the droplet growth has been experimen-
tally confirmed@5,6# ~see, e.g., Fig. 3 of Ref.@5#!. From the
volume conservation under the constraint of constanth, we
obtain the relation hRSdRS /dt;Q, where RS is the
radius of a wetting droplet. Using Siggia’s growth law
for the bulk tubes,a}(s/h)t, we obtain the relation

FIG. 2. Dependence of the prefactorm on the quench depth
DT for two mixtures, PEP-PI and GGW. The dashed lines have a
slope of 3n51.89, wheren is the critical exponent of the correla-
tion length andn50.63 for the 3D Ising universality class.

FIG. 1. Schematic figures explaining the wet-
ting dynamics of bicontinuous tubes to the wall
which is dominated by the hydrodynamic tube
instability: ~a! weak wettability case and~b!
strong wettability case.
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RS;h21/2@(s/h)t#3/2. This explains the fast mode naturally.
Under weak wettability, on the other hand, the wetting drop-
let shape cannot be purely two-dimensional and likely be-
comes more hemispherical~3D! since the interface tension
dominates the shape of a wetting droplet instead of the wet-
ting force. For an exactly 3D droplet growth, for instance, we
obtainRS

2dRS /dt;Q. Including both the above coarsening
laws for 2D and 3D wetting droplets, we obtain the follow-
ing general relation:

RS;@~s/h!t#3/D, ~1!

whereD is the spatial dimensionality of a wetting droplet.
This model can explain the exponent range from 3/2 to 1,
which has been experimentally observed for the fast mode
@7,8#.

The remaining questions are~i! why the bulk hydrody-
namic growth mode ofa;t has not been reported@5–7# and
~ii ! how the bulk domains continuously grow asa;t with
supplying fluid to wetting droplets. On question~i!, we be-
lieve that the bulk mode is hidden in the scattering function
because of the following reason: The tube structure in bulk
can be directly seen, overlapped with wetting droplets, in
Fig. 11 of Ref.@6#, Fig. 4 of Ref.@7#, and Fig. 8 of Ref.@8#
only in the early stage where the fast growth mode does
exist. At the time when the fast growth mode loses its scat-
tering intensity, the bulk tube structure has already disap-
peared and only fine droplets produced by double phase
separation can be seen in bulk. It should be noted that there
is not much difference in peak wave numbers between the
mode of t3/2 and that oft ~less than a factor of 2! in the
limited lifetime of the fast mode. On question~ii !, the growth
law of tubes (a;t) is confirmed experimentally by the
cross-sectional observation of the bulk tube structure in a 1D
capillary@15#. We believe that there is no essential difference
between 1D and 2D capillaries on the dynamics of the sup-
ply of fluid into wetting droplets via bulk tubes@15#: In both
cases, wetting droplets~layers! are formed by the hydrody-
namic flow via bulk bicontinuous tubes@this also supports
the conclusion about question~i!#. The velocity fields in bulk
tubes connected to wetting droplets could be composed of
the background, rather steady velocity fields directed from
bulk to wetting droplets whose magnitude is;s/h and the
weaker fluctuating velocity fields caused by capillary insta-

bility of bulk tubes themselves. We speculate that the unidi-
rectional background flow stabilizes selectively a pumping
tube near the wall, while the local flow driven by local cur-
vature gradients causes the coarsening of tubes (a;t). Fur-
ther theoretical studies are highly desirable for understanding
the physical mechanism.

B. Comparison with the experimental results

Next we discuss the prefactorm defined byRS5mt3/2.
The dependence of the prefactorm on DT is shown in
Fig. 2. The values ofm for the mixture of poly~ethylene-
propylene! and polyisoprene~PEP-PI! and the mixture
of guiaiacol and glycerol-water~GGW! are obtained from
Fig. 1 of Ref. @5# and Fig. 2 of Ref.@7#, respectively. The
dashed lines in Fig. 2 have a slope of 3n (;1.89). According
to our model, m}h21/2(s/h)3/25h21/2(0.2kBT/hj2)3/2

5h21/2(0.2kBT)
3/2(DT/Tc)

3n/(h1/2j0)
3. This relation, m

}(DT)3n, is quite consistent with the experimental results
~see Fig. 2!. The difference in the amplitude ofm between
PEP-PI and GGW can also be explained by our prediction
that m}h23/2j0

23: The bare correlation lengthj0 is more
than several times larger for PEP-PI@22# than for GGW@23#,
reflecting the molecular size difference. The value of viscos-
ity h is about 4 poise for PEP-PI@6# and 3.5 poise for GGW
@8#. These values ofh andj0 lead to the amplitude ratio of
several hundreds, which is comparable to the ratio of;400
obtained from Fig. 2. Thus, our model can explain not only
the time exponent of the fast mode, but also the behavior of
the prefactor of the power law@24#.

C. Dynamic turnover of the exponent

1. Viscous dissipation

Next we discuss the dynamic turnover of the growth
mode of 3/2 to linear growth in the final stage, which has
recently been experimentally found by Harrisonet al. @8#.
This transition from a nonsteady to a steady state can prob-
ably be explained by the existence of two dynamic stages of
droplet spreading~see Fig. 3!: ~i! an initial stage where the
supply of fluid is the limiting process and the velocity grows
as v5dRS /dt;t3/2 and ~ii ! a late stage where the growth
speed is bound by a limiting interface velocityv limit;s/h
determined by the viscous dissipation. In other words, this
turnover is a result of the transition from a regime of con-
stanth to that ofh;RS(t).

Since the energy dissipation due to viscosity associated
with the hydrodynamic domain growth steeply increases
with an increase in the speed of domain growth, there should
be the maximum limiting speed to be allowed, as pointed out
by Marko @10#. Under strong wettability, a wetting droplet
has a 2D disklike shape with the largest energy gain due to
the wetting. However, this configuration costs the largest en-
ergy dissipation from the velocity gradient required to satisfy
the boundary condition at the solid surface. Thus, the balance
among the rate of fluid supply from bulk, the viscous dissi-
pation upon spreading, and the wetting power would select
the wetting domain morphology including the thicknessh.

2. Difference in bulk and surface hydrodynamic growth

Finally, we consider why the spreading droplet can grow
much faster than the bulk tube, even though both grow es-
sentially by the same mechanism of hydrodynamic coarsen-
ing.

FIG. 3. Schematic figure of dynamic turnover from material-
supply-limited growth to viscous-dissipation-limited growth.
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Note that the prefactork of the relationR;k(s/h)t is
different between the surface wetting domains and bulk do-
mains. For a bulk symmetric mixture, it is well known that
the phase separation proceeds by the hydrodynamics unique
to the bicontinuous pattern and the pattern coarsens asR
}(s/h)t in the late stage@1,14#. For bicontinuous phase
separation, the tube flow is essentially caused by the fluctua-
tion of tube size. Siggia estimatedk5kb as 0.1 on the basis
that the pressure difference along the tube is;s/R @14#. As
he pointed out@14#, this pressure difference is probably over-
estimated for the tube-radius fluctuation. Thuskb is likely
smaller thankw . Wong and Knobler@25# estimatedkb as
0.001 from their experimental results. San Miguelet al. @26#
theoretically reestimatedkb on the basis of the capillary in-
stability and they obtained the relationkb;0.04 for the two-
phase fluids having similar viscosity. The recent experiments
by Guenounet al. @27# and by Bates and Wiltzius@28# sup-
ported this evaluation (kb;0.04). For surface wetting drop-
lets, on the other hand, the tube flow is caused deterministi-
cally by a difference in the curvature between the tube and
the wetting droplet; and, thus,k5kw is likely the order of
unity.

This difference betweenkw andkb naturally explains why
the spreading droplet is wider than the tube which is supply-
ing it with material, even though both coarsen by the same
mechanism of hydrodynamic coarsening. The viscous dissi-
pation limit of the velocity is likely given byks/h, where
k is likely the order of unity.

IV. THE BEHAVIOR OF SCATTERING FUNCTIONS:
CORRELATION EFFECTS

Finally, we discuss the evolution of the scattering pattern
originating from individual growth of wetting droplets. The
fact that the scattering intensity of the fast mode stems from
wetting droplets on a 2D solid surface is confirmed by Wilt-
zius and Cumminget al. @5,6#. This is also confirmed by the
recent experiment by Harrisonet al. @8#, which shows that
the Fourier transform of a 2D image of wetting droplets
gives the scattering function of the fast mode. Wiltzius and
Cumminget al. also reported that the scattering intensity of
the fast growth mode initially increases, then decreases, and
eventually disappears~see Fig. 12 of Ref.@6# and Fig. 1 in
Ref. @5#!. This fact can be explained by the violation of the
local conservation law on the 2D solid surface: In the initial
stage, the surface coverage (FS) of the wetting domains is
negligible. In the final stage, on the other hand, the solid
surface is completely covered by the complete wetting layer
(FS51). The surface coverage changes with time because
of the supply of the more wettable fluid from bulk. Such a
temporal change in the surface coverage can be seen in Fig.
4 of Ref. @5#, Fig. 4 of Ref.@7#, and Fig. 8 of Ref.@8#.

To understand the above behavior experimentally ob-
served, we have made a simple simulation on the evolution
of the structure factorS(q) for growing 2D droplets. We
generate 50 white droplets with a value of 1 on a 2D black
surface with a value of 0~size 2563256). The radii of drop-
lets are increased asRS}t

3/2. Then we calculate the power
spectrum of 2D Fourier transformation of an image and ob-

tain the structure factorS(q) by circularly averaging the 2D
power spectrumS(qW ). The spatial correlation effect is a pre-
requisite to producing a peak inS(q) @6#. The spatial corre-
lation of wetting droplets likely stems from the periodicity of
bulk phase-separation patterns. Here, this coherent effect is
artificially introduced by imposing the linearq-dependence
of S(q) for small q. This q-dependence produces a nearly
Gaussian shape ofS(q) experimentally observed@5,7,8#. We
also calculateFS(12FS) by using the surface coverage
FS of white droplets measured from an image. The temporal
change inS(q) is shown in Fig. 4~a!, and those inqmax,
S(qmax), andFS(12FS) are plotted in Fig. 4~b!. The peak
wave numberqmax decreases ast

23/2 and the peak intensity
S(qmax) exhibits maximum, as expected.S(qmax) behaves
similarly with FS(12FS) and has the maximum at
FS51/2. All the behavior is quite consistent with the experi-
mentally observed behavior@5,6#.

V. REMAINING PROBLEMS OF OUR MODEL

Although our hydrodynamic model intuitively explains
many features of fast surface domain growth, the theory is
quite qualitative and there are some remaining unsolved
problems.

The most crucial one is the question of why the 2D drop-
let thicknessh is constant with time during the growth and
what physical factors determineh. We speculate that the

FIG. 4. ~a! Temporal change inS(q) obtained by the simulation.
The dashed curve with arrows indicates the change in the peak
position with time. Filled circles, growing process; filled squares,
decaying process.~b! Temporal changes inqmax, S(qmax), and
FS(12FS). Solid line has a slope of23/2 and dashed curves are
guides for the eye.
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balance among the rate of fluid supply from bulk, the viscous
dissipation upon spreading, and the wetting power select the
wetting domain morphology including the thicknessh. At
this point, we think thath is determined mainly by the ki-
netic factors andh is not strongly affected by the thermody-
namic factors such as the interface thicknessj. If h is
strongly dependent upon the quench depth, however, the de-
pendence of the prefactorm on the quench depthDT can be
altered. These problems about the wetting droplet thickness
seem to be most difficult to solve and further theoretical
studies are highly desirable.

Our model simply treats the bulk and surface pattern evo-
lution independently and assumes that a bulk bicontinuous
tube increases its radius asR;t. We need to explain how the
pumping mechanism of a single tube continues to work with
hydrodynamic coarsening. Although this has been confirmed
experimentally@15,16#, the development of a more analytical
theory including both coarsening processes in a self-
consistent way is highly desirable.

We also need to clarify the number density of tubes con-
nected to a solid surface before the pumping mechanism
starts to work. Another question relating to this problem is
the spatial correlation between wetting domains. The spatial
correlation is a prerequisite for producing a peak in the scat-
tering function. The spatial distribution of wetting droplets is
probably dominated by the initial configuration of tubes per-
pendicularly connected to the wall before the beginning of
hydrodynamic coarsening. Thus, we speculate that the corre-
lation originates from the correlation in the original bulk
phase-separated structure, but there is no firm basis on this
speculation and this point also needs to be clarified.

VI. CONCLUSION

In summary, we have proposed a possible model explain-
ing the fast mode of wetting droplet growth observed in a
phase-separating symmetric fluid mixture confined in a 2D
capillary. Our model is based on the hydrodynamic tube in-
stability, and essentially differs from the model based on
diffusion @9#. Dependences of the time exponent on the
quench depth and the phase-separation time can also be ex-
plained by our model. We believe that the fast mode should
be observed only in a symmetric fluid mixture, and neither in
asymmetric fluid phase separation having a droplet pattern
nor in solid phase separation. The universality of the phe-
nomenon found so far@7,8# is consistent with this prediction.

Simulation is another promising way to study this fast
mode. Relating to this, it should be noted that hydrodynamic
tube instability only exists in 3D, but not in 2D@26#. This
likely explains why the fast mode has not been observed in
2D fluid simulations@11#. Simulation of phase separation in
a 3D fluid mixture under a surface field is probably required
to see this effect.

The study of liquid spreading dynamics has so far been
limited to isolated droplets@3#. Further theoretical studies are
highly desirable for the deep understanding of the spreading
kinetics of a droplet under the supply of fluid from its out-
side.
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